
Startup And Shutdown Points
by Brian Long

There are always requirements
for initialising things, for exam-

ple calling the Randomize routine or
creating a  temporary file with a lot
of commonly used data in. Simi-
larly, there is always a need to do
certain housekeeping tasks, tidy-
ing things up, like the aforemen-
tioned temporary file. Delphi has
several entry and exit points that
you can take advantage of in
executables, and more in DLLs,
although not all are documented.
This article intends to cover all the
standard Delphi compiler and RTL
supported options, but ignores the
object-based options such as
OnCreate, OnActivate and OnShow
events. We will start with the
startup options.

Initialisation Parts
Delphi Pascal units have always
had optional initialisation parts, in
addition to their mandatory inter-
face and implementation parts. If a
unit has an initialisation part, and
is added to the uses clause of any
Pascal source file (unit or project
source file) in a project, the state-
ments in it will be executed when
the program starts. Unit initialisa-
tion parts are executed during the
begin of the begin...end block of
the project source file, and this
happens regardless of whether
anything in the unit’s interface
part is referenced or not. Several
VCL units have initialisation sec-
tions, as does the SysUtils run-time
library unit.

The initialisation part appears at
the end of the implementation part
and is marked either by the word
begin, which dates back to Turbo
Pascal, or initialization, intro-
duced in Delphi 1. The online help
tells us that initialization is pre-
ferred, as its intent is clearer, so it
appears a little odd that Borland
use the old begin approach in many
of the VCL units they supply the
source for in Delphi. The main rea-
son to use the new reserved word
is to avoid Delphi messing up your

form units. If you make a new pro-
ject and add an initialisation part in
the form unit using begin, Delphi is
unable to add event handlers cor-
rectly. Listing 1 has an example
unit with an initialisation section.

Double-clicking the form should
make an OnCreate handler. We get
the unfortunate mess shown in
Listing 2. Using initialization
avoids this and gives the rather
better organised code in Listing 3.

You can put as many statements
in the initialisation section as you
like, without requiring an extra
begin..end block.

InitProc And
TApplication.Initialize
An alternative entry point, which
occurs after the begin of the project
source file (remember unit initiali-
sation parts occur during the begin)
but before any forms get created is

through InitProc. This is a System
unit pointer added in Delphi 2 that
is designed to allow VCL objects to
set themselves up, safe in the
knowledge that all the VCL unit in-
itialisation parts will have finished
executing (as will initialisation
parts of all other units). The OLE
Automation server and COM serv-
er code in Delphi 2 and 3 uses this
hook to parse any important
command-line parameters, such as
/REGSERVER or /UNREGSERVER.

The idea is to set InitProc up to
point at your VCL setup routine in
a unit initialisation part (saving the
old value), and the routine will be
called before any forms are
created. The InitProc chain is in-
voked by a TApplication method
called Initialize. A call to Applica-
tion.Initialize is added to every
new project in Delphi 2 and 3 as the
first instruction in the project

unit Unit1;
interface
...
implementation
...
procedure TForm1.FormCreate(Sender: TObject);
begin
end;
initialization { start of initialisation section }
  Randomize; { initialisation code }
end. { end of unit }

➤ Listing 3

unit Unit1;
interface
...
implementation
...
begin { start of initialisation section }
  Randomize; { initialisation code }
end. { end of unit }

➤ Listing 1

unit Unit1;
interface
...
implementation
...
begin { start of initialisation section }
  Randomize; { initialisation code }
procedure TForm1.FormCreate(Sender: TObject);
begin
end;
end. { end of unit }

➤ Listing 2

July 1997 The Delphi Magazine 27



source file. Once you know this you
can remove the line if you have no
need for InitProc, and you are not
writing an OLE or COM server
application.

To set up InitProc you need a
pointer variable to store the old
value and a parameterless proce-
dure whose address can be as-
signed to it. The procedure will
need to call the old routine that
used to be in InitProc (if any) using
type TProcedure as a typecast, and
then do whatever initialisation is
required. Some code from the im-
plementation section of a unit that
does this is given in Listing 4.

ExitProc
Things are similar for exit hooks,
but not identical. You might expect
ExitProc to be the exact opposite of
InitProc, operating in the same
way, but you would be wrong. The
System unit pointer ExitProc has
been around for some time (ie it
pre-dates Delphi 1), and is a bit
more automatic than InitProc,
which needs to be kicked off with a
call to a TApplication method.
ExitProc hooks are invoked after
the project source file’s code has
finished executing, during the
System unit shutdown procedure.

To set up an ExitProc hook, you
need a pointer variable. At some
point in the program’s lifetime (and
in fact usually in a unit initialisation
part) you need to assign the ad-
dress of your exit procedure to
ExitProc after saving the old value
in your pointer variable. If you are
using Delphi 1, the exit procedure
needs to be compiled in the far call
model. The easiest way of ensuring
this is the case is to put the far
directive at the end of the proce-
dure header. Note that far is
ignored in Delphi 2 and 3. However,
you can also declare the routine in
the unit’s interface section to
achieve the same effect.

In the exit procedure, ExitProc
must be assigned its old value
before your shutdown code is
performed. See Listing 5.

Notice that with ExitProc you
don’t call the old routine, unlike
with InitProc (but you must set
ExitProc to refer to the old rou-
tine). Inside the Delphi RTL is some

assembler code to do it, which
executes just before the program
exits. You can consider it to be
doing this:

while Assigned(ExitProc) do
  TProcedure(ExitProc);

Note that ExitProc should only be
used in fixed EXE or DLL units: it is
not compatible with Delphi 3
packages. So, in Delphi 3, ExitProc
should only be used in a unit that
has been marked with the $Deny-
PackageUnit compiler directive to
avoid any catastrophes (Access
Violations in fact). Packages must
use AddTerminateProc or finalisa-
tion sections instead (see later).

AddExitProc
To make exit procedures a bit
easier to add in, Delphi 1 intro-
duced the AddExitProc routine to
the SysUtils unit. AddExitProc adds
an exit procedure to a chain of rou-
tines in a similar way to ExitProc,
but maintains the list itself. As a
result, your exit procedure need do
nothing more than the tidying up
code that you want to write. Your
exit procedure, as with ExitProc,
must be a parameterless routine
and if in Delphi 1 must be compiled
in the far call model. See Listing 6.

Routines added with AddExitProc
will execute after the project
source file has finished running but
before procedures added through
ExitProc. Note that the exit rou-
tines added are executed in re-
verse order: the last one added is
executed first.

Note that AddExitProc should
only be used in fixed EXE or DLL
units: it is not compatible with
packages. So, as before, in Delphi 3,

AddExitProc should only be used in
units marked with the $DenyPack-
ageUnit compiler directive. Pack-
ages must use AddTerminateProc or
finalisation sections instead.

AddTerminateProc
Delphi 3 adds this into the pro-
grammer’s arsenal. You can use
AddTerminateProc to add a function
that returns a Boolean into the list
of termination routines. The gen-
eral purpose of these routines is to
provide a generalised way of allow-
ing or preventing your program
from terminating. When your pro-
gram is about to close, the VCL
calls all the functions set up with
AddTerminateProc to see if it is okay
to exit. If any of them return False,
the termination is stopped. This is
even true if the termination was
due to the user trying to close
Windows. If any of the routines re-
turn False, Windows will not close.

The routines are called in the
implementation of Application.
Terminate and also in the
wm_QueryEndSession message han-
dler in the TCustomForm class. That
means they execute before all
the unit exit procedures and
finalisation sections.

I suppose this is a more global
way of providing an OnCloseQuery

unit Unit1;
interface
...
implementation
uses SysUtils;
...
var OldExitProc: Pointer;
procedure NewExitProc; far;
begin
  { Do tidy-up code here };
end;
initialization
  AddExitProc(NewExitProc);
end.

➤ Listing 6

unit Unit1;
interface
...
implementation
...
var OldExitProc: Pointer;
procedure NewExitProc;
begin
  ExitProc := OldExitProc;
  { Do tidy-up code here };
end;
initialization
  OldExitProc := ExitProc;
  ExitProc := @NewExitProc;
end.

➤ Listing 5

unit Unit1;
interface
...
implementation
...
var OldInitProc: Pointer;
procedure NewInitProc;
begin
  if Assigned(OldInitProc) then
    TProcedure(OldInitProc);
  { Do initialisation code here };
end;
initialization
  OldInitProc := InitProc;
  InitProc := @NewInitProc;
end.

➤ Listing 4

28 The Delphi Magazine Issue 23



handler for the main form, obvi-
ously without requiring any
changes to the main form unit. The
Delphi 3 ComServer unit uses it to
bring up a warning if anyone tries
to close a COM server app manu-
ally, rather than via the client app
(see Figure 1). If the user is happy
to close the server manually, the
routine returns True. If they change
their mind it returns False.

Given that the supplied Borland
code only implements a termina-
tion handler for COM servers, you
can use this approach as a general
shutdown mechanism (Listing 7).

Finalisation Part
Delphi 2 and 3 have an optional unit
part to complement the initialisa-
tion part. The finalization

keyword signifies the beginning of
a finalisation part. Finalisation
parts must be placed after initiali-
sation parts, and can only be added
to a unit if there is an initialisation
part. The obvious workaround if
you want shutdown code but no
startup code is to have an empty
initialisation part.

Finalisation parts execute after
the project source code, any
AddExitProc routines and ExitProc
routines have executed. Also, final-
isation parts execute in the oppo-
site order to initialisation parts.
Listing 8 shows a finalisation part.

DLLs
In 16-bit Windows, C programmers
have LibMain and WEP for their DLL
startup and shutdown code. Apart

from all the unit entry and exit
hooks discussed above, Delphi 1’s
equivalent to LibMain is the project
source file main block (the
begin..end section). In Win32, C
programmers have a routine called
DllEntryPoint (also known as
DllMain) which acts as both an en-
try and exit point for DLLs.

DllEntryPoint gets called under
four circumstances, and is passed
a parameter to indicate the circum-
stance (see Table 1).

Delphi does not have a direct
DllEntryPoint equivalent, but we
can make one using the 32-bit Sys-
tem unit pointer DLLProc. This
pointer starts off as nil, but can be
assigned the address of a routine
taking a double word parameter.
This routine effectively becomes
DllEntryPoint, being called when
necessary, except for one small
problem.

DllEntryPoint should be called
when a DLL gets loaded, but at that
time DLLProc is nil. So our DllEn-
tryPoint replacement will only be
invoked for three out of the four
circumstances. We can fudge our
way around the problem by explic-
itly calling the routine after setting
up DLLProc as shown in Listing 9.

Summary
Delphi provides a number of entry
and exit hooks for programmers to
take advantage of. To show them

➤ Figure 1 unit Unit1;
interface
...
implementation
uses SysUtils;
...
function NewTerminateProc: Boolean;
begin
  { Allow termination to proceed }
  Result := True;      
  { Do tidy-up code here };
  end;
initialization
 AddTerminateProc(NewTerminateProc);
end.

➤ Listing 7

unit Unit1;
interface
...
implementation
...
initialization
{ startup code}
finalization
{ shutdown code }
end.

➤ Listing 8

Parameter Value Reason for Parameter

dll_Process_Attach DLL is being loaded explicitly by a call to LoadLibrary,
or implicitly due to a process starting up.

dll_Process_Detach DLL is being freed due to a process exit or a call to
FreeLibrary.

dll_Thread_Attach A thread (other than the main process thread) has been
created in a process attached to the DLL.

dll_Thread_Detach A thread is exiting cleanly in a process attached to the
DLL.

➤ Table 1: DllEntryPoint parameter values

library Dll;
uses Windows;
procedure DllEntryPoint(Reason: DWord);
begin
  case Reason of
    dll_Process_Attach: { do something };
    dll_Thread_Attach:  { do something };
    dll_Thread_Detach:  { do something };
    dll_Process_Detach: { do something };
  end;
end;
begin
  if IsLibrary then begin
    // Set up the DLLEntryPoint routine
    DLLProc := @DLLEntryPoint;
    // Call it for process attachment (it won’t happen automatically)
    DllEntryPoint(dll_Process_Attach)
  end
end.

➤ Listing 9

30 The Delphi Magazine Issue 23



all in action, there are some exam-
ple projects on this month’s disk.
STUBEXE32.DPR and STUBDLL32.DPR
demonstrate all the hooks avail-
able for 32-bit DLLs and EXEs. Com-
pile them both and then run
STUBEXE32.EXE. This is a console
mode application which writes out
a line at each point of significance.
Remember that since ExitProc and
AddExitProc are both used, you
must compile without run-time
package support in Delphi 3, other-
wise you will get Access Violations
on program termination.

Figure 3 shows the output after
each button in STUBEXE32.EXE
(Figure 2) was pressed in turn and
the application was closed.

STUBEXE.DPR and STUBDLL.DPR
are 16-bit versions of the program
and DLL. Because 16-bit applica-
tions can’t use console mode, and
because DLLs can’t use the WinCrt
unit, I made these files generate
Windows debug strings at the rele-
vant places. A debugging tool such
as DBWin can capture these as
shown in Figure 4. Note also that
the program is a bit simpler since
Win16 has no thread support and
does not have finalisation sections
or AddTerminateProc support.

Acting When The Form
Has Finished Drawing
Before we leave this article to rest,
one last thing. There are various
hooks into a form that trigger at
various points in its lifetime. On-
Create is called in its constructor,
OnShow is called when it has been
asked to become visible, but hasn’t
actually got there. You can also
override the Loaded method to act
after all properties of all compo-
nents on the form have been read
in and set. But there is no
event/method that lets you do
some processing after the form has
set itself up and finished drawing
itself in its initial state. What do we
do if we want such an event?

Well, you could make a wm_Paint
message handler or OnPaint event
handler, but that would be trig-
gered every time the form needed
painting. To achieve this possible
requirement you can post yourself
a custom message. The problem
with OnShow is that it gets executed

➤ Figure 2

➤ Figure 3

➤ Figure 4

unit TestMsgU;
interface
uses
  SysUtils, WinTypes, WinProcs, Messages, Classes,
  Graphics, Controls, Forms, Dialogs, StdCtrls;
const
  wm_CustomMsg = wm_User + $999;
type
  TForm1 = class(TForm)
    procedure FormCreate(Sender: TObject);
  private
    procedure WMCustomMsg(var Msg: TMessage); message wm_CustomMsg;
  end;
var
  Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.FormCreate(Sender: TObject);
begin
  PostMessage(Handle, wm_CustomMsg, 0, 0);
end;
procedure TForm1.WMCustomMsg(var Msg: TMessage);
begin
  ShowMessage(
    ’The form has finished drawing before ’#13’this message box was drawn’);
end;
end.

➤ Listing 10

July 1997 The Delphi Magazine 31



immediately after the form is told
to paint itself. This would be okay,
but the form is told to paint in an
indirect way that causes a wm_Paint
message to be posted into the
form’s message queue and there-
fore not processed straight away.
So the OnShow handler executes and
then at some later point the
wm_Paint message gets processed
and the form draws. What we can
do is to cause a message of our own
to also be posted into the form’s
message queue, but ensure it gets
in after the wm_Paint. Posting a mes-
sage from the form’s OnCreate
event handler seems to do as we
require, which only leaves writing
an appropriate message handler to
do the rest.

An example form unit from
TESTMSG.DPR is shown in Listing
10. It has a message handler that
simply brings up a modal message
box. If you run the program, you
will find the message box appears
immediately after the form has first
drawn itself (see Figure 5). If you
try putting a call to ShowMessage in
an OnShow handler, it will appear
before the form draws itself (see
Figure 6).

Brian Long is a UK-based freelance
Delphi and C++ Builder consultant
and trainer. He is available for
bookings and can be contacted at
brian@blong.com. Professional en-
quiries can go to consultancy@
blong.com or training@blong .com

➤ Above: Figure 5

➤ Below: Figure 6

32 The Delphi Magazine Issue 23


	Initialisation Parts
	InitProc And TApplication.Initialize
	ExitProc
	AddExitProc
	AddTerminateProc
	Finalisation Part
	DLLs
	Summary
	Acting When The Form Has Finished Drawing

